background/intro

!Versatile Multi-stage Graph Neural Network forCircuit Representation(NetlistGNN) 2024-11-19.excalidraw

我们的目的:
(1) design a data structure to represent the circuit, which is adaptive to circuits in both logic synthesis and placement stages;
(2) propose an efficient and effective circuit representation model which is compatible with two stages and various downstream tasks
对两个阶段都有用

怎么办

Circuit Graph

Circuit Featurization


grid feature 对应 geometrical information,用grid块划分电路,然后分块表示,数学模型计作$$
X_{gr}=R^{C_{x} \times C_{y}\times D{gr}}

whereCx,CyarethecolumnandrownumbersofgridsgridDgristhedimensionofgridsrawfeatures.gridTopologyfeature:cellsV+netsU+pinsP

{V,U,P,X_{u},X_{p},X_{v}}

### Definition of Circuit Graph ![image-20241120000540432.png](/img/user/1.%20Projects/%E5%8F%91%E5%B1%95-%E6%B7%B1%E9%80%A0-RA_SIT/assets/Versatile%20Multi-stage%20Graph%20Neural%20Network%20forCircuit%20Representation(NetlistGNN)/image-20241120000540432.png) 对两个信息统一编码

G= {V,U,\varepsilon_{t},\varepsilon_{G} ,X_{u},X_{v},X_{\varepsilon_{t}},X_{\varepsilon_{G}}}

- we first take pins as topo-edges $\varepsilon_{T}$ :figb,字面义,接线做节点的直观操作 - Then we link the geometrically-close cells with geom-edges $\varepsilon_{G}$ :figc 链接出现在同一片区的cell 最终终极表示如右上角所示 ## Circuit GNN ![image-20241120003405884.png](/img/user/1.%20Projects/%E5%8F%91%E5%B1%95-%E6%B7%B1%E9%80%A0-RA_SIT/assets/Versatile%20Multi-stage%20Graph%20Neural%20Network%20forCircuit%20Representation(NetlistGNN)/image-20241120003405884.png) 1. 特征表示,通过MLP变成hidden state, 2. 图中部,L layers of circuit message-passing,获得deeper representations 3. 右侧:task-adaptive readout layers ## 实验 ### 数据 拥塞预测是在详细布线阶段布线之前预测布线拥塞的任务。它广泛应用于布局工具中,以快速反馈布局质量并避免可布线性差的布局解决方案。为了更早地识别和解决潜在的拥塞结构,多项研究试图在逻辑综合阶段(单元放置之前)预测单元级拥塞。我们在ISPD2011上进行了实验,它总共包含12个VLSI设计。我们使用10个设计(1/2/3/5/6/7/9/11/14/16)进行训练,使用设计#18进行验证,使用设计#19进行测试。我们使用DREAMPlace放置单元并初始化单元、网络和网格的原始特征。NCTU-GR 2.0是一种流行的全局路由器,用于生成网格上的拥塞目标。每个单元的拥塞目标设置为其所在网格的值。对于逻辑综合阶段的拥塞预测,我们仅使用电路的拓扑结构和几何不敏感特征。对于布局中的预测,我们还使用 DREAMPlace 生成的单元位置。 >我有一个问题,ISPD2011看起来只有八个,为啥论文里说有12个 ### 结果 ![image-20241120004419251.png](/img/user/1.%20Projects/%E5%8F%91%E5%B1%95-%E6%B7%B1%E9%80%A0-RA_SIT/image-20241120004419251.png) 我们首先在逻辑综合阶段评估电路的拥塞预测结果(当几何信息不可用时)(表 1) We first evaluate the congestion prediction result on circuits in logic synthesis stage when geometric information is not available (Tab.1). Then we perform the same task in placement stage as shown in Tab.2 and Appendix Tab.12. Note that geometrical methods pix2pix and LHNN are not aware of cells in circuit design, so they are not evaluated on Cell-level. GAT (w. geom.) is regular GAT with cell positions as additional features. The results show that: (1) In logic synthesis stage, our method with only topo-edges achieves the best performance (16.7% over cutting-edge CongestionNet) with a similar time cost compared to traditional GNN models (5x faster than MPNN which has a time-expensive and underused edge function for netlist input). (2) In placement stage, our method beats the cutting-edge LHNN in most metrics (5.6% on average) while taking only one-tenth of the run-time. The superior performance of our model is primarily attributed to the fusion of both topological and geometrical information. Fig.5 visualizes the predicted congestion values using different methods. Compared to vision-based method [9] and lattice network-based method [15], our proposed method can generate finer congestion prediction with better discriminability. 相关的数据